
StrataCode Do more than code - StrataCode

• Mostly solo project by Jeffrey Vroom

• Layers to organize code. Build declarative, efficient apps

• Software Architect: AVS, ATG, Adobe Flex Data Services

• Last ten years consulting and building StrataCode

• Looking for ideas to make it better, projects to build, and more partners to help

• Open source if there’s enough support

Introducing StrataCode

Code processing framework

class Foo {
 int bar() {
 if(a) {}
 }
}

Grammar

JavaModel

ClassDecl

MethodDef

IfStatement

Code.java: Language features (AST):

Parse

Update code Property changes

Parse

Multi-process build/run from one layer stack

Run layers Process 1 Process 2 Process 3

Layers organize into separate processes

Install dependencies -> organize processes -> generate source -> compile -> package -> deploy

Running process

object temperature extends Converter {
 value1 = 0;
 value2 :=: value1 * 9.0/5.0 + 32;
 unit1 = “Celsius”;
 unit2 = “Fahrenheit”;
 title = “Temperature”;
}

Code.java:

Live editingRefresh

Live programming for better management UIs

Layered languages - extensions to Java

.sc -> StrataCode language

also: .sct, .schtml, .scxml, sccss, scsh formats - JSP-like

integrated into the language for when a file is ‘mostly text’

modifies

SharedForm SharedWidget

WebForm WebWidget MobileForm MobileWidget

SharedModule

WebModule MobileModule

extends extends

Modules using o/o inheritance

• More, longer type names

• Wrong type in code e.g. need WebForm but have

SharedForm

Form Widget

Form Widget

Form Widget

WebLayer

MobileLayer

SharedLayer

Layers using modify

• Code naturally organized by dependencies

• Better reuse, readability, refactorability

extends

Separating code by dependencies

Product Category

Product Category

Domain model

Many uses for layers

UI/SQL

Separate UI/Persistence

Server DBConnection

Server DBConnection

Server/DB Framework

Config/devops

Separate configuration

Promotion Product

Promotion Product

Ecommerce domain model

Merchandiser

Business rules

And more: client/server, devops configuration + code, project configuration rules, testing, localization, style/
design, plugins, inversion of control, 3rd party customizations, microservices, security sandboxes, dynamic/
compiled code, A/B testing

Layered project organization

• Written in dynamic StrataCode

• Static typed, IDE support

• Improve customization intent

• Simpler project directories

Layer definition file

 a := b

Data binding

 a :=: b

 a =: b

Components

init, start, validate

Properties

• get/set conversion

• change events

• mix compiled and

dynamic properties in
one type

 a =: b()

eval

Templates

• dynamic text - sct, scxml, sccss,

• build languages on top (like schtml),

• stateful and stateless support

• JSP operators, but more like an extension to Java

Features for declarative programming

IntelliJ plugin
Java-like editing, debugging for sc, sct, schtml, scj, scr in all frameworks

Code processing of language features

Annotations

Perform code processing on a type when an annotation is set - ‘annotation layers’ for compiled Java

parent/child relationships

Implement nested objects with a 3rd party library - code templates for compiled, IDynManager for dynamic

Full featured API, code processing engine, with runtime support

Supports compiled or source type systems. Full type indexing for both IDE or runtime. Optional
‘liveDynamicTypes’ mode to track object instances of certain types for management UIs.

IntelliJ plugin support built in

Usually no extra work to support framework features in the IDE

Much more - carefully designed hooks for framework developers

3rd party integrations

android, swing, junit, jdbc, servlets, opengl, opencv, jetty, jpa,

StrataCode web framework

Experimental: wicket, gwt

Current frameworks

StrataCode web framework

Rule oriented templates

Stateless Stateful

Converted to an output method Converted to reactive components

Client (js)

Server (java)

Run layers

web/js/module1.js, module2.js

js/*.js

java/*.java

java/*.java

split into

client/server

generates

converts to

packages

generates

client/server (isomorphic)

http server config for *.html

Three ways to deploy web components

Client (js)

web/js/module1.js, module2.js

js/*.js

java/*.java, web/*.html

generates

converts to

packages

client only
Server (java)

js/stags.js

java/*.java
generates

server only

http server config

for *html

Special tag attributes
extends - inherit attributes + body from another tag

visible - add/remove tag from page
class, style - set to expressions for dynamic logic

repeat - iterate tag
replaceWith - substitute a different tag
DOM events - click, mouseDown/Up/Move, keyDown/Up, focus/blur

DOM properties - clientWidth/Height, offsetTop/Left/Width/Height
Merging - tagMerge, bodyMerge, addBefore, addAfter, orderValue
scope - change lifecycle of the tag/page: e.g. request, window, appSession, …

exec - run tag on client, server, or both - by default inherits from parent tag or app default

(and much more)

abstract - define tag macros

Run layers

client

serversplit into client + server processes

layers synchronized

server method

call to method
automatic

remote call

Data synchronization + auto RPC

Async call with reverse data binding

overlapping

layers

server only

layers

compiled

dynamic
on the fly changing code, runtime config, optimized for ‘run once’

readable, debuggable Java

Flexible runtime that evolves and scales efficiently

One syntax - two ways to run layers and types:

Mix compiled and dynamic features in one type - change the boundary as needed

Management UI framework
• Build UIs from domain objects

• Portable: desktop, web

• Edit configuration, rules - in place or in a new layer

• Create instances, types, properties, layers

• Navigate by type name, by layer or both

• Layers - multiple views on the same type

Instance View

View, edit, create instances in the running application

Type view
Edit property initialization, data binding rules, add properties

Updates source files incrementally for mixed tool/developer workflows

Code view

Mini IDE (using codemirror in the browser, rtext in swing)

Edit-time errors, syntax highlighting, code-hinting

Navigate by type or by layer

merged view

file system view

Versatile test scripts, command line

• Line-oriented StrataCode

• IDE support

• Target one or more processes

• Automatic remote methods

• Layering, nesting with ‘include’

• Script mode - edit instances

• Edit mode - edit types

Learn more

Learn more at www.stratacode.com

Contact jeff@jvroom.com

See the status page for how we are doing

Examples, documentation, articles

Ideas for improvements?

Build something together?

http://www.stratacode.com
mailto:jeff@jvroom.com

